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Abstract
Most high-speed Internet Protocol (IP) lookup imple-

mentations use tree traversal and pipelining. Due to the
available on-chip memory and the number of I/O pins of
Field Programmable Gate Arrays (FPGAs), state-of-the-
art designs cannot support the current largest routing table
(consisting of 257K prefixes in backbone routers). We pro-
pose a novel scalable high-throughput, low-power SRAM-
based linear pipeline architecture for IP lookup. Using a
single FPGA, the proposed architecture can support the
current largest routing table, or even larger tables of up
to 400K prefixes. Our architecture can also be easily par-
titioned, so as to use external SRAM to handle even larger
routing tables (up to 1.7M prefixes). Our implementation
shows a high throughput (340 mega lookups per second or
109 Gbps), even when external SRAM is used. The use of
SRAM (instead of TCAM) leads to an order of magnitude re-
duction in power dissipation. Additionally, the architecture
supports power saving by allowing only a portion of the
memory to be active on each memory access. Our design
also maintains packet input order and supports in-place
non-blocking route updates.

1 Introduction
1.1 Internet Protocol Packet Forwarding

With the rapid growth of the Internet, IP packet forward-

ing, or simply IP lookup, becomes the bottle-neck in net-

work traffic management. Therefore, the design of high

speed IP routers has been a major area of research. Ad-

vances in optical networking technology are pushing link

rates in high speed IP routers beyond OC-768 (40 Gbps).

Such high rates demand that packet forwarding in IP routers

must be performed in hardware. For instance, a 40 Gbps

link requires a throughput of 125 million packets per sec-
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Table 1: Comparison of TCAM and SRAM

TCAM(18Mb) SRAM(18Mb)

Maximum clock rate (MHz) 266 400

Cell size (# of transistors/bit) 16 6

Power consumption (Watts) 12 ∼ 15 ≈ 1

ond (MPPS), for a minimum size (40-byte) packet. Such

throughput is impossible to achieve using existing software-

based solutions [1].

IP lookup is a classic problem. Most hardware-based

solutions in network routers fall into two main categories:

TCAM-based and dynamic/static random access memory

(DRAM/SRAM)-based solutions. Although TCAM-based

engines can retrieve results in just one clock cycle, their

throughput is limited by the relatively low speed of TCAMs.

They are expensive, power-hungry, and offer little adapt-

ability to new addressing and routing protocols [7]. As

shown in Table 1, SRAMs outperform TCAMs with respect

to speed, density, and power consumption [2, 3, 4, 5, 6].

SRAM-based solutions, on the other hand, require mul-

tiple cycles to process a packet. Therefore, pipelining

techniques are commonly used to improve the throughput.

These SRAM-based approaches, however, result in an inef-

ficient memory utilization. This inefficiency limits the size

of the supported routing tables. In addition, it is not fea-

sible to use external SRAM in these architectures, due to

the constraint on the number of I/O pins. This constraint

restricts the number of external stages, while the amount

of on-chip memory confines the size of memory for each

pipeline stage. Due to these two constraints, state-of-the-art

SRAM-based solutions do not scale to support larger rout-

ing tables. This scalability has been a dominant issue for

any implementations on FPGAs. Furthermore, pipelined

architectures increase the total number of memory accesses

per clock cycle, and thus, increase the dynamic power con-

sumption. The power dissipation in the memory dominates

that in the logic [8, 9, 10]. Therefore, reducing memory

power dissipation contributes to a large reduction in the to-
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tal power consumption.

1.2 Challenges and Contributions
The key issues to be addressed in designing an architec-

ture for IP packet forwarding engine are: (1) size of sup-

ported routing table, (2) throughput, (3) scalability (with

multiple chips or external storage), (4) in-order packet out-

put, (5) incremental update, and (6) power consumption.

To address these challenges, we propose and implement

a scalable, high-throughput SRAM-based multiple-linear-

pipeline architecture for IP lookup on FPGAs. This archi-

tecture eliminates the need to store the addresses of the child

nodes by using a binary search tree (BST) structure. In a

complete binary tree, the amount of memory to store the

nodes in a next level doubles as we go from a level to the

next. As a result, we can move the largest levels onto ex-

ternal SRAMs. In addition, the linear architecture also pre-

serves the packet order of incoming network traffic. The

number of levels (or pipeline stages) is determined by the

size of the supported routing table, as discussed in detail in

Section 5.

This paper makes the following contributions:

• To the best of our knowledge, the proposed architec-

ture is the first binary-tree-based design to use on-chip

FPGA resources only to support the current largest
routing table of over 260K prefixes, and up to 400K
prefixes (Section 5.1).

• The architecture can easily utilize external SRAM to

handle up to 1.7M prefixes (Section 5.2).

• The proposed architecture scales well as the number of

prefixes grows, due to a linear storage complexity and

low resource utilization (Section 4.4).

• The implementation results show a sustained through-

put of 340 MLPS, even when external SRAM is used

(Section 7.1).

• It supports power efficiency by minimizing the amount

of active on-chip memory (Section 6).

The rest of the paper is organized as follows. Section 2

covers the background and related work. Section 3 intro-

duces the IP lookup algorithm. Section 4 and 5 describe

the proposed architecture and its implementation. Section 6

discusses the power optimization. Section 7 presents imple-

mentation results. Section 8 concludes the paper.

2 Background and Related Work
The following definitions and notations are used

throughout this paper:

1. Packet’s IP address, or simply IP address, is the net-

work address where the packet is destined to. It is ex-

tracted from the header of the incoming packet.

2. Next hop (routing) index is a parameter that determines

where the packet is forwarded.

3. |P | is the length or the number of bits of prefix P .

4. The “ ” symbol represents concatenation operation.
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Figure 1: A sample routing table and its leaf-pushed trie.

2.1 Background

In computer networking, a routing table is an electronic

table or database that is stored in a router or a networked

computer. The routing table stores the routes and metrics

associated with those routes, such as next hop routing in-

dices, to particular network destinations. The IP lookup

problem is longest prefix matching (LPM). LPM refers to

an algorithm used by routers in IP networking to select an

entry from a routing table. To determine the outgoing port

for a given address, the longest matching prefix among all

the prefixes needs to be determined. Routing tables often

contain a default route, which has the shortest possible pre-

fix match, in case matches with all other entries fail. In

a sample routing table shown in Figure 1, binary prefix

P4 (01001*) matches all destination addresses that begin

with 01001. Similarly, prefix P5 matches all destination

addresses that begin with 01011. The destination address

IP = 01011100 is matched by the prefixes P1, P3, and P5.

Since, |P1| = 1, |P3| = 3, and |P5| = 5, P5 is the longest pre-

fix that matches IP . In longest-prefix routing, the next hop

index for a packet is given by the table entry corresponding

to the longest prefix that matches its destination IP address.

Current solutions can be classified into two main groups:

TCAM-based and SRAM-based. In TCAM-based solu-

tions, each prefix is stored in a word. An incoming IP ad-

dress is searched in parallel on all words in TCAM in one

clock cycle. TCAM-based solutions are simple, and there-

fore, are de-facto solutions for today’s routers. In SRAM-

based solutions, the common data structure in algorithmic

solutions for performing LPM is some form of tree, such

as a trie [1]. A trie is a binary-tree-like data structure for

LPM. Each prefix is represented by a node in the trie, and

the value of the prefix corresponds to the path from the root

of the tree to the node. IP lookup is performed by traversing

the trie according to the bits in the IP address. When a leaf

is reached, the last seen prefix along the path to the leaf is

the longest matching prefix for the IP address. A sample

trie is shown in Figure 1.

The common problem of these trie-based IP lookup ar-

chitectures is that each node must store the addresses of its

child nodes and the next hop index. Even with an optimiza-

tion called leaf-pushing [11], each node still needs to store

one field: either the next hop index or the pointer to the

child nodes. This address book-keeping overhead leads to

an inefficient storage as the address length increases when
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the number of nodes (or prefixes) increases.

2.2 Related Work
Despite a large amount of work in IP lookup ([11, 12, 13,

14]), most of them do not target FPGA platform. Since the

proposed work addresses FPGA implementation, we sum-

marize the related work in this area. TCAM is widely used

to simplify the complexity of the designs. However, TCAM

results in lower overall clock speed and higher power con-

sumption of the entire system.

The fastest IP lookup implementation on FPGAs to date

is reported in [15], which can achieve a lookup rate of

325 MLPS. This is a bidirectional optimized linear pipeline

architecture, named BiOLP, which takes advantage of the

dual-ported SRAM to map the prefix trie in both directions.

By doing this, BiOLP achieves a perfectly balanced mem-

ory allocation over all pipeline stages. BiOLP can support

a Mae-West routing table (rrc08, 84K prefixes). BiOLP is

based on trie, whereas in the proposed work, binary search

tree algorithm is used.

Another fast IP lookup implementation on FPGAs thus

far is described in [16], which can achieve 263 MLPS. Their

architecture takes advantage of the benefit of both a tradi-

tional hashing scheme and reconfigurable hardware. They

implement only the colliding prefixes (prefixes with the

same hashing value) on reconfigurable hardware, and the

remaining prefixes in a main table on memory. This ar-

chitecture supports a Mae-West routing table (rrc08, 84K

prefixes), and can be updated using partial reconfiguration

when adding or removing prefixes. The update time is lower

bounded by the reconfiguration time. It is also not clear how

to scale this design to support larger routing tables.

Baboescu et al. [17] propose a Ring pipeline architecture

for tree-based search engines. The pipeline stages are con-

figured in a circular, multi-point access pipeline so that the

search can be initiated at any stage. The implementation

in [18] achieves a throughput of 125 MLPS. Sangireddy et

al. [19] propose two algorithms, Elevator-Stairs and log W-

Elevators, which are scalable and memory efficient. Yet,

their designs can achieve only up to 21.41 MLPS. Meribout

et al. [20] present another architecture, with a lookup speed

of 66 MLPS. In this design, Random Access Memory is re-

quired, and the achieved lookup rate is reasonably low.

As summarized above, all of the prior work on FPGA

can not support a routing table with 100K or more prefixes.

Moreover, none of the prior work offers any techniques to

reduce power consumption of the memory.

3 IP Lookup Algorithm

3.1 Prefix Properties

Let W be the length of the IP address, W = 32 for IPv4.

We first introduce two prefix properties that are used as the

foundation of our work.

100*

010*

001* 011*

110*

101* 111*

0 1

00 01 10 11

Figure 2: A sample routing table with prefix length of 3 and its

corresponding binary search tree.

Property 1: Given two prefixes, PA and PB , if |PA| =
|PB | then PA and PB do not overlap.

Proof : In the IP address space, each prefix represents an

address range. Without loss of generality, assume that PA <
PB . The range of PA and PB are [PA 0..0, PA 1..1] and

[PB 0..0, PB 1..1], respectively. The number of appended

0s and 1s is W − |PA| for both PA and PA, as they are of

the same length. Since PA < PB , we have [PA 1..1] <
[PB 0..0], and hence the two ranges do not overlap.

Property 2: Given a prefix PA with length n, PA can be

represented as the union of 2 prefixes PB and PC of length

(n + 1) by appending 0 and 1 to PA.

Proof : Let PB = PA 0 and PC = PA 1. The ranges

of PB and PC are [PA 0 0..0, PA 0 1..1] and [PA 1 0..0,

PA 1 1..1], respectively. Since PA 0 1..1+1 = PA 1 0..0,

the union of these two ranges is [PA 0 0..0, PA 1 1..1], or

[PA 0..0, PA 11..11], which is exactly the range of PA.

3.2 Binary-Search-Tree-based IP Lookup

We propose a memory efficient data structure based on a

binary search tree (BST). BST is a special binary tree data

structure with the following properties: (1) each node has

a value, (2) the left subtree of a node contains only val-

ues less than the node’s value, and (3) the right subtree of

a node contains only values greater than the node’s value.

The binary search algorithm is a technique to find a specific

element in a sorted list. In a balanced binary search tree, an

element, if it exists, can be found in at most (1 + �log2 N�)
operations, where N is the total number of nodes in the tree.

A sample routing table with prefixes of length 3 and its

corresponding BST are illustrated in Figure 2. For simplic-

ity, 8-bit IP addresses are considered. Each node of the bi-

nary tree contains a prefix and its corresponding next hop
index. Only the k most significant bits of the IP address en-

ter the tree from its root, where k is the length of the prefix

(3 in this case). At each node, the k most significant bits of

the IP address and node’s prefix are compared to determine

the matching status and also the traversal direction.

For each set of prefixes of the same length, we build a bi-

nary search tree. Given such a binary search tree, IP lookup

is performed by traversing left or right, depending on the

comparison result at each node. If the entering IP address is
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Figure 3: Two cases of complete BST

smaller or equal to a node’s prefix, it is forwarded to the left

branch of the node, and to the right branch otherwise. For

example, assume that a packet with destination address of

01100101 arrives. At the root, the prefix 100 is compared

with 011, which is smaller. Thus, the packet traverses to

the left. The comparison with the prefix in node #2 yields a

greater outcome, hence the packet traverses to the right. At

node #3, the packet header matches the node’s prefix, which

is the final result.

We must ensure that the proposed algorithm actually

finds the longest matching prefix. Based on Property 1,

prefixes with the same length do not overlap. If a given

IP address has the longest prefix match of length k, its k
most significant bits must be a prefix, which is a node in

the binary search tree of prefixes of length k. The property

of binary search tree guarantees that that prefix is found.

Other binary search trees of prefixes of shorter lengths may

give some matches as well. However, only the match from

the binary search tree of prefixes of the longest length is

returned by using a priority selector.

3.3 BST Construction

Algorithm 1 COMPLETEBST(SORTED ARRAY)

Input: Array A[N] of N prefixes sorted in ascending order

Output: Complete BST

1: n = �log2(N + 1)�, Δ = N − (2n−1 − 1)
2: if (Δ ≤ 2n−1/2) then
3: x = 2n−2 − 1 + Δ
4: else
5: x = 2n−1 − 1
6: end if
7: Pick element A[x] as root

8: Left-branch = COMPLETEBST(left-of-x sub-array)

9: Right-branch = COMPLETEBST(right-of-x sub-array)

We use a complete BST for efficient memory utilization.

In such a tree, all levels are fully occupied, except possibly

the last one. If the last level is not full, all nodes are as far

left as possible. A group of prefixes of the same length is

sorted into an array in ascending order. The corresponding

BST can easily be built by picking the right prefix (pivot) as

the root, and recursively building the left and right subtrees.

Two cases of complete BST, in which the last level is not

complete, are illustrated in Figure 3.

Let N be the number of prefixes in one group, n be the

number of levels, and Δ be the number of prefixes in the last

level. The total number of nodes in all stages, excluding the

40%
50%
60%

0%
10%
20%
30%

0 8 16 24 32
Length of prefix

Figure 4: Prefix histogram of sample routing tables.

last stage, is 2n−1 − 1. Therefore, the number of nodes in

the last stage is Δ = N − (2n−1 − 1). There are 2n−1

nodes in the last stage if it is full. If Δ ≤ 2n−1/2, we

have a complete BST, as in Figure 3 (a), or (b) otherwise.

Let x be the index of the desired root, x can be calculated as

x = 2n−2−1+Δ for case (a), or x = 2n−1−1 for case (b).

The complete BST can be built recursively, as described in

Algorithm 1.

3.4 Prefix Partitioning
16 real-life routing tables are shown in Table 2. These

routing tables were collected from [21] on 2007/11/30. The

prefix histograms of different routing tables are illustrated

in Figure 4. An interesting observation is that all 16 sample

routing tables have a similar distribution, which suggests

that a common prefix partitioning can be used.

The number of binary search trees can be reduced by ap-

plying Property 2. By grouping 2 consecutive prefix lengths

together, we reduce the number of BSTs by half. There may

be some conflicts when converting prefixes with length n to

length n + 1. These conflicts occur if prefix PA of length

n + 1 is a longer prefix of PB of length n. In this case, the

converted prefix of PB that conflicts with PA is ignored, as

PA is longer.

Groups of more than 2 consecutive prefix lengths can

also be considered. However, while the number of BSTs

decreases, the total number of combined prefixes may in-

crease. A dynamic programming algorithm can be utilized

to determine the optimal size of each group. Only group of

size 2 is addressed in this paper.

We use the largest sample routing table rrc7 (248856 pre-

fixes) for our analysis. The number of prefixes of length 1

to 14 is very small compared to others. Hence, we convert

the first 13 prefix lengths to length 14. The number of orig-

inal and converted prefixes are shown in Table 3. Since the

total number of prefixes up to prefix of length 14 after con-

version is 3592, it is reasonable to perform direct memory

access on them. This search requires only 14-bit address,

which is extracted from the higher-order bits of the incom-

ing IP address.

The rest of the prefixes are organized into 9

groups, each with 2 consecutive prefix lengths: (15,16),

(17,18),...,(31,32). The notation (m, n) represents a group

of all prefixes of length m to n. The distribution of the orig-
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Table 2: Collected sample routing tables

Table rrc0 rrc1 rrc2 rrc3 rrc4 rrc5 rrc6 rrc7 rrc8 rrc9 rrc10 rrc11 rrc12 rrc13 rrc14 rrc15

# prefixes 244K 241K 238K 247K 240K 242K 240K 249K 84K 133K 237K 239K 244K 239K 244K 243K

Table 3: Converted prefixes from length (1 to 13) to 14

Prefix’s length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 TOTAL

# prefixes 0 0 0 0 0 0 0 18 9 16 40 134 275 490 982

# converted prefixes 0 0 0 0 0 0 0 1152 288 256 320 536 550 490 3592
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Figure 5: Overall Architecture.

inal prefixes and the combined prefixes of each group can

be seen in Table 4. The worst-case combined prefix occurs

when there is no prefix that is longer than any other prefixes

in a group. The actual total number of combined prefixes

in each group is often less. Even with the largest table, the

amount of required memory is only 8878 Kb, which is less

than the 10 Mb on-chip memory of a state-of-the-art FPGA

device. Analysis of other tables show similar memory dis-

tribution and require a smaller amount of memory. Due to

space limitation, these results are not shown.

4 Architecture
4.1 Overall Architecture

Binary tree structure is utilized in our design. To en-

sure that every IP lookup results in the same number of

operations or cycles, the IP address continues with all the

comparisons even though a match may have already been

found. Pipelining is used to increase the throughput. The

number of pipeline stages is determined by the height of

the BST. Each level of the tree is mapped onto a pipeline

stage, which has its own memory (or table). The size of ta-

ble doubles from one stage to the next stage. The maximum

number of prefixes in a stage is determined by 2n, where n
is the stage index.

Figure 5 describes the overall architecture of the pro-

posed IP lookup engine. There are nine pipelines (one for

each group of prefixes), one direct memory access block,

and one new-prefix buffer block. The IP address is extracted

from the incoming packet and routed to all branches. The

searches are performed in parallel in all the pipelines, the

memory block, and the new-prefix buffer. The results are

fed through a priority selector to select the next hop index

of the longest matched prefix. The variation in the number

of stages in these pipelines results in latency mismatch. The

delay block is appended to each shorter pipeline to match

with the latency of the longest pipeline. A similar delay ap-

proach is used in the direct memory access and the update

Comp
B>AA

B B

Comp

In_1 Out_1

Dual Port
SRAM

Addr1

Addr2

Data1

Data2Address
IP

Address
IP

Address
IP BB

A B>A Address
IP

Pipeline 1
Pipeline 2

NHRINHRI

NHRI NHRINHIn NHOut

NHIn NHOut

Out_2In_2

Figure 6: Block diagram of a single pipeline (Addr - Address;

NHRI - Next hop routing index; IP - IP Address).

block to match the latencies.

4.2 Single-pipeline Architecture
The block diagram of the basic pipeline and a single

stage are shown in Figure 6. The on-chip memory in FP-

GAs comes with a dual-ported feature. To take advantage

of it, the architecture is configured as dual linear pipelines

to double the lookup rate. At each stage, the memory has

dual Read/Write ports so that two packets can be input ev-

ery clock cycle. The content of each entry in the memory

includes the prefix and its next hop routing index. In each

pipeline stage, there are 3 data forwarded from the previous

stage: (1) the IP address, (2) the memory access address,

and (3) the next hop index. The forwarded memory address

is used to retrieve the node prefix, which is compared with

the IP address to determine the matching status. In case of a

match, the next hop index of the new match replaces the old

result. The comparison result (1 if the IP address is greater

than node prefix, 0 otherwise) is appended to the current

memory address and forwarded to the next stage.

4.3 Routing Table Update
Routing table update includes three operations: (1) ex-

isting prefix modification, (2) prefix deletion, and (3) new

prefix insertion. The first update requires changing the next

hop indices of the existing prefixes in the routing table. This

type of update can easily be done by inserting write bub-

bles [22], as shown in Figure 7. The new content of the

memory is computed off-line. When a prefix update is ini-

tiated, a write bubble is inserted into the pipeline. Each

write bubble is assigned an ID. There is one write bubble
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Table 4: Converted prefixes of length 15 to 32

Prefix length 15 16 17 18 19 20 21 22 23 24

# prefixes 961 9763 4240 6824 14826 16949 15948 20213 21346 125592

# worst case combined prefixes 11685 15304 46601 52109 168284

Required amount of memory (Kb) 258 368 1212 1460 5049

Prefix’s length 25 26 27 28 29 30 31 32 TOTAL

# prefixes 1084 1090 568 905 2083 1899 0 3583 248846
# worst case combined prefixes 3258 2041 6065 3583 312522
Required amount of memory (Kb) 107 70 219 137 8878 Kb

Dual-Port
SRAM

Write Bubble Table

Address New 
Content

Write 
Enable

Write Bubble ID

Figure 7: Route update using write-bubbles.

table (WBT) in each stage. The table stores the update in-

formation associated with the write bubble ID. When it ar-

rives at the stage prior to the stage to be updated, the write

bubble uses its ID to look up the WBT. Then the bubble

retrieves (1) the memory address to be updated in the next

stage, (2) the new content for that memory location, and (3)

a write enable bit. If the write enable bit is set, the write

bubble will use the new content to update the memory lo-

cation in the next stage. This updating mechanism supports

non-blocking prefix updates at system speed.

The second type of update requires deleting existing pre-

fix. There are two methods: lazy deletion and complete

deletion. The lazy approach assigns the default next hop in-

dex to the to-be-deleted prefixes. It can be done using the

same updating mechanism described above. In the complete

deletion, if the structure of the tree changes, the BST must

be rebuilt, and the entire memory content of each pipeline

stage must be reloaded.

In the third type of update new prefixes are inserted into

the existing routing table. A TCAM-like buffer is used to

store a small number of new prefixes, as shown in Fig-

ure 5. If the new prefix changes the structure of the BST,

it is added into the buffer, or into the BST otherwise. When

the buffer is full, the BST must be rebuilt and repopulated.

4.4 Scalability

The use of the complete BST structure leads to a lin-

ear storage complexity in our design, as each node con-

tains exactly one prefix. The height of a complete BST is

(1 + �log2 N�), where N is the number of nodes. Since

each level of the BST is mapped to a pipeline stage, the

height of the BST determines the number of stages. Our

proposed architecture is simple, and is expected to utilize a

small amount of logic resource. Hence, the major constraint

that dictates the number of pipeline stages, and in turn the

size of supported routing table, is the amount of on-chip

memory. As mentioned before, the memory size doubles as

we go from one level to the next of a complete BST. There-

fore, we can move the largest stages onto external SRAM.

Consequently, for each additional stage on external SRAM,

the size of the supported routing table is doubled. However,

due to the limit on the number of I/O pins of FPGA devices,

we can fit only a certain number of stages on SRAM, as

described in detail in Section 5.2.

The scalability of our architecture relies on the close re-

lationship between the size of the routing tables and the

number of required pipeline stages. As the number of pre-

fixes increases, extra pipeline stages are needed. To avoid

reprogramming the FPGA, we can allocate the maximum

possible number of pipeline stages and use only what we

need. The only draw back is that this approach introduces

more latency (by the extra number of pipeline stages).

5 Implementation
5.1 Without External SRAM

As stated earlier, the memory size in each stage doubles

that of the previous stage if they are full. Therefore, Stage

0 has one entry, Stage 1 has two entries,· · · , Stage i has 2i

entries. Each entry includes: a prefix (length of n), and its

next hop index (6 bits). That makes a total of (n + 6) bits

per entry. On a Xilinx FPGA, BRAM comes in blocks of

18 Kb. The distribution of the number of prefixes, number

of pipeline stages, and the required BRAMs in each group

of prefixes are shown in Table 5. Our target chip is a large

state-of-the-art device. The Virtex-4 FX140, has 9936 Kb

of BRAM on chip, or 552 blocks. Our design utilizes 497
memory blocks , or about 90% of the available memory, to

support routing table rrc7 (248856 prefixes). With the max-

imum utilization of on-chip memory, the design can support

a routing table of up to 260K prefixes. Using the Virtex-5

FX200T (with 16 Mb or 912 BRAMs) as our target chip,

we can scale up the design to support over 400K prefixes.

5.2 With External SRAM
In our design, external SRAMs can be used to handle

even larger routing tables, by moving the last stages of the

pipelines onto external SRAMs. Currently, SRAM is avail-

able in 2 − 32 Mb chips [4], with data widths of 18, 32, or

36 bits, and a maximum access frequency of over 400MHz.

Each stage uses dual port memory, which requires two ad-

dress and two data ports. In general, stage i of pipeline
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Table 5: Number of required BRAMs for each group of prefixes

Group of prefixes (1,14) (15,16) (17,18) (19,20) (21,22) (23,24) (25,26) (27,28) (29,30) (31,32)

# prefixes 3592 11685 15304 46601 52109 168284 3258 2041 6065 3583

# pipeline stages 14 14 16 16 18 12 11 13 12

# BRAM 8 15 21 67 80 275 7 4 12 8

Table 6: Number of required BRAMs and SRAMs for each group of prefixes

Group of prefixes (1,14) (15,16) (17,18) (19,20) (21,22) (23,24) (25,26) (27,28) (29,30) (31,32)

# internal/external stages 0/0 16/0 17/0 17/2 15/4 17/4 14/0 13/0 15/0 14/0

# BRAM 8 79 171 185 50 214 29 31 64 34

Amount of SRAM (Mb) 0 0 0 13.6 14.7 62.9 0 0 0 0

(n, n + 1) requires 2 × i (address) + 2 × (n + 7) (data)

pins going into the FPGA chip. For instance, stage 15 of

pipeline (15,16) requires 76 pins. Similarly, stage 15 of pi-

pline (17,18) needs 80 pins. The largest Virtex package,

which has 1517 I/O pins, can interface easily with 10 banks

of dual port SRAMs. Using this package, we can add extra

stage to each pipeline, and hence, double the size of the

supported routing table. Moreover, since the access fre-

quency of SRAM is twice that of our targeting frequency

(200 MHz), the use of external SRAM should not adversely

affect the performance of our design. Table 6 describes

the relationship between the groups of prefixes, the amount

of on-chip BRAM (using Virtex-5 FX200T), and external

SRAM needed. This configuration can support a routing

table consisting of over 1.7M prefixes.

6 Power Optimization
6.1 Memory Activation

As mentioned before, in our design, the power dissipa-

tion in the memory dominates that in the logic. There-

fore, reducing power consumption in memory contributes

to a large reduction in the total power consumption. Note

that a BRAM consumes power as soon as it is enabled and

clocked, even if no input signals are changing. In each

stage of the pipeline, more than one BRAM is used. How-

ever, only one BRAM is accessed per clock cycle. This

observation suggests a way to reduce memory power con-

sumption by turning off the BRAMs that are not being ac-

cessed. We can easily achieve this by using a decoder to

manually control each individual BRAM. We use the upper

bits of the memory address to control the decoder, and the

lower bits to access the individual BRAM. The number of

lower bits depends on the data width of the memory. Let

N be the number of nodes and NB be the number of nodes

per BRAM, the power saving factor can be calculated as

N/(log2 N ×NB). The additional logic used to build these

decoders is justified when considering the amount of power

that can be saved.

6.2 Cross-Pipeline Optimization

We can further reduce power consumption across the

pipelines using the longest prefix matching property. If a

Table 7: Implementation results

Min. clock period Max. frequency # BRAM Logic

5.875 ns 170 MHz 497 26 %

Power consumption 1.59 W 0.573 W

match with length n has been found, there is no need to find

matches with lengths less than n. Hence, in Figure 5, if

pipeline i has matched a prefix at stage j, the subsequent

stage traversals in pipelines 1 to i are not necessary, and

therefore, can be turned off to save power.

In the worst case scenario, all the pipelines must traverse

to the last stages to find a match. In this case, we have 126

active stages, each requiring one active BRAM, for the to-

tal of 126 active BRAMs. Using Xilinx XPower with the

running clock frequency of 200 MHz, the power consump-

tion of a 18 Kb-BRAM is recorded as 14.83 mW/200 MHz.

With this result, the total power consumption of all BRAMs

in the design is only 1.87 W.

The same technique can also be applied to reduce the

power consumption of external SRAM. The memory con-

troller for SRAM can either be built using on-chip logic re-

source or using external hardware. However, to take the

burden off the internal resource, and to utilize the widely

available memory controller in the market, an external ap-

proach is preferable.

7 Implementation Results

7.1 Throughput and Power Consumption

We implemented the proposed architecture in Verilog,

using Synplify Pro 9.6.2 and Xilinx ISE 10.1.3, with Virtex-

4 FX140 as the target. The results are shown in Ta-

ble 7. The implementation showed a minimum clock pe-

riod of 5.875 ns, or a maximum frequency of 170 MHz.

With a dual pipeline architecture, this design can achieve

a throughput of 340 MLPS, or 109 Gbps. Throughout this

paper, throughput in Gpps is calculated based on a mini-

mum packet size of 40 bytes (or 320 bits). We also per-

formed a detailed analysis on power consumption using Xil-

inx XPower. The BRAM power consumption reported is

lower than our analysis of 1.87 W due to a slower clock

frequency (170 MHz vs. 200 MHz).
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Table 8: Performance comparison

Architecture # slices # BRAMs # prefixes Throughput

1 ([17, 18]) 1405(2.3%) 530 80K 125 MLPS

2 ([16]) 14274(22.7%) 254 80K 263 MLPS

3 (USC) 16617(26%) 473 249K 340 MLPS

7.2 Performance Comparison
Two key comparisons were performed with respect to the

size of supported routing table and throughput. The two

candidates were (1) the Ring architecture [17, 18] and (2)

the state of the art architecture on FPGA [16]. These ar-

chitectures can support the largest routing tables to date and

have the highest throughput. All the resource data were nor-

malized to Virtex-4 FX140, as shown in Table 8. Note that

power consumption comparison is not possible as it was not

reported for these designs.

With a lookup rate of 340 MLPS, our design had higher

throughput than Architecture 1 (125 MLPS) and Architec-

ture 2 (263 MLPS). Using only BRAM, the proposed ar-

chitecture outperformed the two architectures with respect

to the size of the supported routing table (260K vs. 80K).

Using Virtex-5 FX200T with 16 Mb or 912 BRAMs, our

design supported up to 400K prefixes. Our architecture also

supports fast, non-blocking incremental update at run time

without any design tool involvement (as does Architecture

1). This update operation is done by inserting the write

bubble into the traffic stream whenever there is an update.

In contrast, Architecture 2 relies on partial reconfiguration,

which requires modifying, synthesizing, and implementing

the code to regenerate the partial bitstream. Additionally,

our design allows in-order output packets. With regards to

scalability, it can be partitioned to use BRAM+SRAM, as

discussed in Section 5.2, to support larger routing tables of

up to 1.7M prefixes. This can be done without sacrificing

the sustained throughput.

8 Concluding Remarks
This paper proposed and implemented a scalable high

throughput, low power SRAM-based pipeline architecture

for IP lookup, that does not TCAM. By using a binary

search tree algorithm, the address of the child node can

be eliminated, resulting in an efficient memory utilization.

Consequently, our architecture can support large routing ta-

bles of up to 400K prefixes, using only on-chip BRAM.

This is 1.5 times the size of the current largest routing

table (260K prefixes). Using external SRAM, this archi-

tecture can handle even larger routing tables consisting of

over 1.7M prefixes. Our design sustained a lookup rate

of 340 MLPS even when external SRAM is used. This

throughput translates to 109 Gbps, which is 2.7× the speed

of OC-768. This is the highest throughput reported for

FPGA implementation. In addition, we introduced a power

saving technique to reduce the memory power consumption.

The design also maintains the packet input order and sup-

ports nonblocking route update.
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